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Boundary-forced stratified turbulence is studied in the prototypical case of turbulent
channel flow subject to stable stratification. The large-eddy simulation approach is
used with a mixed subgrid model that involves a dynamic eddy viscosity component
and a scale-similarity component. After an initial transient, the flow reaches a new
balanced state corresponding to active wall-bounded turbulence with reduced vertical
transport which, for the cases in our study with moderate-to-large levels of stratifi-
cation, coexists with internal wave activity in the core of the channel. A systematic
reduction of turbulence levels, density fluctuations and associated vertical transport
with increasing stratification is observed. Countergradient buoyancy flux is observed
in the outer region for sufficiently high stratification.

Mixing of the density field in stratified channel flow results from turbulent events
generated near the boundaries that couple with the outer, more stable flow. The
vertical density structure is thus of interest for analogous boundary-forced mixing
situations in geophysical flows. It is found that, with increasing stratification, the
mean density profile becomes sharper in the central region between the two turbulent
layers at the upper and lower walls, similar to observations in field measurements as
well as laboratory experiments with analogous density-mixing situations.

Channel flow is strongly inhomogeneous with alternative choices for the Richardson
number. In spite of these complications, the gradient Richardson number, Ri,, appears
to be the important local determinant of buoyancy effects. All simulated cases show
that correlation coefficients associated with vertical transport collapse from their
nominal unstratified values over a narrow range, 0.15 < Ri, < 0.25. The vertical
turbulent Froude number, Fr,, has an O(1) value across most of the channel. It
is remarkable that stratified channel flow, with such a large variation of overall
density difference (factor of 26) between cases, shows a relatively universal behaviour
of correlation coefficients and vertical Froude number when plotted as a function
of Ri,. The visualizations show wavy motion in the core region where the gradient
Richardson number, Ri,, is large and low-speed streaks in the near-wall region, typical
of unstratified channel flow, where Ri, is small. It appears from the visualizations that,
with increasing stratification, the region with wavy motion progressively encroaches
into the zone with active turbulence; the location of Ri, ~ 0.2 roughly corresponds
to the boundary between the two zones.
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1. Introduction

The study of stratified turbulent shear flows is relevant to many applications in
environmental and geophysical flows. Stratification leads to qualitative and quanti-
tative changes in the small-scale mixing of momentum, salinity, pollutant and nutrients
which must be understood and, furthermore, parameterized in large-scale circulation
models. Turbulence in geophysical flows has a wide variety of sources, for example, see
Caldwell (1987) and Caldwell & Moum (1995) for a discussion in the context of ocean
microstructure. Often, the forcing involves boundaries: the wind-driven upper mixed
layer; the bottom boundary layer, especially in shallow coastal waters; side boundaries
in estuaries, tidal channels and bays; as well as separated flows over sills, seamounts
and at the coastline. Of the many past experimental and numerical investigations
of turbulent transport and mixing in a stably stratified medium, the predominant
majority has dealt with flows away from boundaries. However, as discussed above,
there are situations where boundaries are important determinants of mixing.

Perhaps the question of the most global importance in stratified shear flows is
how does the turbulence level and associated mixing in shear flows change when
the stratification, measured by an appropriate parameter, increases. This information
is not only key to our knowledge of stratified flow physics but also critical to
predictive models of ocean/atmospheric mesoscales where stratification effects on the
microstructure must necessarily be parameterized. The primary external parameter
associated with stratification in shear flows is the gradient Richardson number,
Ri, = N?/S?, where N is the Brunt-—Viisild frequency and S is the mean shear rate.
The following brief literature survey indicates that, while our understanding of the
Richardson number dependence is fair in free shear flows, it is poor in the case of
wall-bounded flows.

Linear inviscid stability analysis by Miles (1961) gives Ri, > 0.25 as a sufficient
condition for stability of a sheared stratified flow. The analogous criterion for the fate
of large-amplitude nonlinearly evolving disturbances is of great interest and has been
studied in various configurations as discussed below.

Uniformly sheared flow in a fluid with linear stratification has been extensively
studied because the spatially constant value of Ri, in such a flow leads to considerable
simplification. Rohr et al. (1998) performed laboratory experiments using a salt-
stratified water channel. The critical value, Ri, ., is defined to be the value of gradient
Richardson number where a constant level of velocity fluctuations is obtained; these
fluctuations decay for Ri, > Ri,. whereas turbulence grows for Ri, < Ri,.. The
results of Rohr et al. (1988) show that Ri,.. = 0.25 4+ 0.05. Further experimental
studies were performed using a thermally stratified facility by Piccirillo & Van Atta
(1995), DNS was performed by Gerz, Schumann & Elghobashi (1989), Holt, Koseff
& Ferziger (1992), Jacobitz, Sarkar & Van Atta (1997), Jacobitz & Sarkar (1999) and
Diamessis & Nomura (2000), and LES by Kaltenbach, Gerz & Schumann (1994). One
conclusion of these studies is that the value of Ri,. depends on other parameters. It
increases with Reynolds number, asymptoting to a constant value. The value of Ri,,
is also a function of shear number, Sk/e (with k the turbulent kinetic energy and e
the dissipation rate), as shown in a systematic study by Jacobitz et al. (1997) using
DNS. At sufficiently large values of Sk/e, linear effects persist leading to anomalously
low turbulence growth rates. The shear number effect over a range of initial Reynolds
numbers, Re; = 22, 44 and 88 was studied by Jacobitz & Sarkar (1999) who found
that the value of SK /e required for the persistence of linear effects increases with
Reynolds number. Shih et al. (2000) also found a shear number effect at moderate
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values of Re;; however, their series at Re; = 88 did not extend to a sufficiently
large value of SK /e for the shear number effect to be important. To summarize, for
moderate values of the shear number and sufficiently large Reynolds number, the
observed values of Ri,. in the range 0.18 < Ri,. < 0.25 are consistent with the
linear analysis result that Ri, > 0.25 is a sufficient condition for stability.

The shear layer developing between two streams of different velocity and different
densities is a model problem of great interest because the Kelvin—-Helmholtz billows
and subsequent secondary instabilities are found to correlate with ocean microstruc-
ture in field data. Laboratory experiments by Thorpe (1973), Koop & Browand (1979)
and, more recently, numerical simulations by Caulfield & Peltier (2000), Smyth &
Moum (2000) and Staquet (1995) have investigated the evolution of the stratified
shear layer. During the evolution of the shear layer, the Richardson number increases
and, eventually, further thickness growth by turbulent entrainment is suppressed; the
centreline value of Ri, associated with such suppression has values similar to that of
Ri, ., in uniformly sheared flow.

Relative to free shear flows, few investigations of stratified wall-bounded flows
have been performed. The qualitative difference between the inner and outer layers
of turbulent wall-bounded flows along with the spatial inhomogeneity of the flow
introduces different Richardson numbers (see §§ 3.1 and 3.2 for pertinent definitions)
as relevant parameters. The buoyancy flux in stratified boundary layers is boundary-
driven with the turbulence originating near the wall where the gradient Richardson
number, Ri,, is small, and then passing to the outer, less-active region where the local
values of Ri, are large.

Oceanic measurements of turbulence quantities in stratified wall-bounded situations
are relatively scarce because of difficulties in performing such measurements. Recently,
Lu, Lueck & Huang (2000) have reported turbulence measurements in the Cordova
Channel, a tidal channel of 30m depth. Stratification levels as measured by Ri, were
found to be significant and to cause lower mixing lengths and transport coefficients
relative to values expected for unstratified flow. Mean velocity profiles were found to
be fitted by a log-law. Stacey, Monismith & Burau (1999) have measured profiles of
Reynolds stress in the northern San Francisco Bay. The effect of stable stratification
was found to be strong during weak ebb/flood tides and to confine active turbulence
to a region near the bottom boundary away from the upper, largely inactive zone.

The atmospheric boundary layer under both convective and stable conditions has
been previously investigated. Field observations of the vertical variation of vertical
fluxes, mean velocity and mean temperature indicate that the upper portion that caps
the stable boundary layer has significant wave activity and intermittency. Large-eddy
simulation (LES) of the stable atmospheric boundary has been performed by Mason
& Derbyshire (1990) and Saiki, Moeng & Sullivan (2000) with eddy-diffusivity type
models. Mason & Derbyshire (1990) used the Smagorinsky model with a modification
dependent on the subgrid value of the flux Richardson number, Riy, while Saiki et al.
(2000) use an additional transport equation for the subgrid kinetic energy. Kosovic
& Curry (2000) use a nonlinear (quadratic in strain rate) eddy diffusivity model, a
transport equation for the subgrid kinetic energy, and assign a fixed fraction of the
net energy transfer to backscatter. A bottom boundary layer capped by an upper
region with internal wave activity is observed by Kosovic & Curry (2000) and Saiki
et al. (2000) in their simulations.

Experimental investigations of stratified wall-bounded turbulence were performed
by Arya (1975), Piat & Hopfinger (1981), Britter (1974), Komori (1980) and Komori et
al. (1983) (hereafter the last two works are referred to as KUOM). Arya considered a
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stratified boundary layer of air developing over a cooled /heated wall and, in the stably
stratified regime, increased the overall Richardson number, Ri; = (gdAp)/(pou? ), with
0 the boundary layer thickness and U, the free-stream velocity, up to Ri; = 0.098. It
was found that stable stratification reduces both the skin friction coefficient and the
Nusselt number as well as suppresses turbulence intensities. No relaminarization of the
flow was observed in the range of Richardson numbers investigated by Arya (1975).
Britter (1974) studied a channel flow with heated top wall and adiabatic bottom
wall. A large reduction in the Nusselt number was observed at high levels of overall
stratification. The experiments of KUOM were performed by condensing steam over
the upper surface in an open-channel flow. The bulk Richardson number, Ri, =
(gRAp)/2pou; with R the hydraulic radius and u;, the bulk (average over the cross-
section) velocity, was varied up to Ri, = 0.135. Turbulence levels and the buoyancy
flux were found to exhibit a general reduction with increasing stratification. Again, no
relaminarization was observed. KUOM found that, under strong stratification, a wave-
like motion occurs in the core of the channel together with countergradient momentum
and heat fluxes. When the outer-layer quantities are plotted as a function of the local
gradient Richardson number, it was found that the correlation coefficients associated
with the Reynolds shear stress decreased sharply at Ri, ~ 0.1 and approached zero
at values of approximately Ri, ~ 0.2 —0.3.

Recently Garg (1996) and Garg et al. (2000) (henceforth both referred to as
GFMK) performed LES and DNS of a stratified, incompressible turbulent channel
flow. The Boussinesq form of the governing equations was used and a dynamic eddy-
viscosity model was employed for the parameterization of the subgrid-scale stresses
and density fluxes. The equations were solved with a hybrid spectral finite-difference
discretization and a fractional-step algorithm. The mean pressure gradient that drives
the flow was kept constant. In addition to closed-channel flow, open channel flow
was also simulated by the authors. In the case of closed channel flow, the authors
investigated the range of Richardson numbers, 0 < Ri; < 60, in a flow with Re, = 180
and obtained interesting results. Three regimes depending on the friction Richardson
number Ri, = Apgh/pou? (with u, denoting the friction velocity) were identified: for
Ri; < 30, there is a buoyancy-affected regime (BA) in which turbulence is suppressed
but still active; for 30 < Ri, < 45, there is a buoyancy-controlled regime with
relaminarization of one half of the channel during the early stage of the simulation
followed by sharp transition that restores a symmetric turbulent flow; for Ri, > 45,
there is a buoyancy-dominated regime (BD) characterized by rapid relaminarization
of the whole flow. Unlike previous investigations, it was concluded that the friction
Richardson number is better suited for the characterization of the flow regimes than
the gradient Richardson number.

Criteria for the stability of stratified wall-bounded flows to linearly evolving dis-
turbances were obtained by Gage & Reid (1968) and Gage (1971). The analysis of
Gage & Reid (1968) for plane Poiseuille flow with a linear density profile (Prandtl
number of unity) showed that the critical Richardson number increases with increas-
ing Reynolds number. For infinite Reynolds number, it was found that channel flow
is linearly stable for Ri. > 0.0554. In that study, the Richardson number is defined
as Ri. = ghAp/8pou? where g is the gravitational acceleration, h is the channel half-
height, Ap is the difference between density values at the walls, py is a reference
density and u, is the centreline velocity. Note that Ri,. is equal to the minimum value
of the usual gradient Richardson number, Ri, = N 2 /82, associated with the base flow.

The literature survey, summarized above, reveals the following open issues regarding
channel flow subjected to stable stratification.
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(a) The numerical results of GFMK regarding the state of fluctuating motion
at strong stable stratification are not consistent with the results of linear theory,
laboratory experiments, and field observations. The linear analysis of Gage &
Reid (1968) gives the value of the critical Richardson number required for a
stratified channel flow to remain laminar as a function of Reynolds number. It
is shown in §3.4 that, for the case with Re, = 180 considered by GFMK, the
corresponding laminar flow would be linearly unstable for Ri, < 881. On the
other hand, the value of Ri, >~ 45 is quoted by GFMK as the value at which
the flow relaminarizes. Laboratory experiments, as discussed more fully in §3.3 that
summarizes the results of KUOM, do not show complete relaminarization in wall-
bounded turbulence, for stratification levels equivalent to that in GFMK. For example,
turbulence in the inner layer along with a wave-like motion in the outer layer
is observed for very strong stratification by KUOM. Field observations such as
those of Stacey et al. (1999) also show active turbulence in a bottom boundary
layer coexisting with an upper zone consisting of suppressed, inactive fluctuating
motion.

(b) The experimental investigations of wall-bounded flows (for example see Arya
1975; Komori et al. 1983), studies of stratified shear flows in general, and parameter-
izations of environmental and geophysical flows emphasize the gradient Richardson
number or the Monin—-Obukhov length. However, other parameters such as the fric-
tion Richardson number have also been used.

In the light of the above issues, we revisit the problem of stably stratified channel
flow by performing a LES study. The major questions motivating our study are:
(a) What is the state of fluctuating motion as a function of overall stable density
difference, and (b) is the local gradient Richardson number a good local determinant
of the state of the flow and associated turbulent transport? These questions are of
course generic to a broad class of wall-bounded stably stratified flows. The simulated
cases in our LES study span a wide range of stratifications, 0 < Ri, < 0.593. The
centreline Reynolds number varies in the range 3240 < Re, < 7149 while the nominal
friction Reynolds number is Re, = 180.

The present study focuses on the response of initially turbulent flow subjected to
stable stratification. The development of an initially laminar flow with corresponding
parabolic velocity profile and a linear density profile is also important, but is a
distinct problem involving laminar-to-turbulent transition that deserves a separate
investigation. Uniform shear flow with isotropic turbulence as initial conditions has
been shown by Rohr et al. (1988) to exhibit three asymptotic states of fluctuating
motion, i.e. growth, constant value, or decay depending on whether the value of
Ri, is less than, equal to, or greater than the critical value, Ri,.. The DNS of the
initially laminar shear layer by Smyth & Moum (2000) shows that the same three
regimes are visited in sequence when the shear layer thickness and the value of Ri,
increase in time. Both uniform shear flow and the shear layer, also exhibit similar
values of the gradient Richardson number, Ri, .. ~ 0.25. Based on the free shear flow
cases, perhaps in the case of wall-bounded flows there is a similar correspondence
between the problem with laminar initial conditions and that with turbulent initial
conditions.

The paper is organized as follows. The next section contains the mathematical model
together with a brief description of the SGS models and the algorithm used for the
integration of the filtered equations. Section 3 gives theoretical background necessary
to interpret the results. Sections 4 and 5 describe the results of our simulation. A
discussion of these results is finally reported in § 6.
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2. Mathematical model
2.1. Governing equations

In the present paper we consider a turbulent plane channel flow. In order to conform
with the numerical study of GFMK as well as the experimental investigation of
KUOM, a relatively low Reynolds number flow is simulated, Re, = uh/v = 180,
based on the channel half-height & and the friction velocity u, = \/7,,/po with t,, the
wall stress and pg a reference density. Following the recent DNS study of Moser, Kim
& Mansour (1999), the computational domain is L, = 4nh long in the streamwise
(x) direction, L, = (4/3)nh wide in the transverse (y) direction, and 2h high in the
vertical (z), wall-normal direction. A constant pressure gradient drives the flow and
a stable stratification is maintained by imposing a constant upper-wall density which
is smaller than the constant bottom-wall density. The total density field is

p (x,,2,1) = po + p(x,y,2,1)
with
p(x,y,2,t) = py(z, 1) + p'(x,y, 2, 1).
Here py(z,t) is the mean, bulk density profile that is a function of the vertical space
coordinate and is obtained by plane-averaging over the (x, y)-planes of homogeneity,
while p'(x, y, z, t) is the fluctuating three-dimensional field.

Under the assumption that the density variation is small with respect to the reference
density po, the Boussinesq approximation holds and the density in the inertial term
is taken to be constant, p* = po. The filtered governing equations can be written as
follows:

ou;
=0 2.1
o (2.1)
ow  owmw  op 1 @ om o ot
=+ — F&i1 — Ri(p — pp)dis — —2, 22
ot 0x; dx;  Redx; 0x; T o P = Pr)o 0X; @2
op  dup _, 0 b 0k (2.3)

6[ an 6Xj an 6Xj

In (2.1)—(2.3), w; is the i-component of the filtered velocity field made dimensionless
with a reference velocity u,, p denotes the filtered pressure field (non-dimensionalized
by pou?) that remains after removing the component that is in hydrostatic balance
with the bulk density field, the density difference appearing in the buoyancy term
is normalized by an appropriate scale Ap, F is the constant driving force, ie. the
imposed non-dimensional mean pressure gradient, 7;; and Z; are the subgrid-scale
(SGS) stress and density flux, respectively, which need to be modelled, and k = v/Pr
is the molecular diffusivity of the density field. The non-dimensional parameters are
as follows: Re = u.h/v is the reference Reynolds number, Pr is the reference Prandtl
number and Ri = Apgh/pou? is the reference Richardson number. In the present
simulations, we use Pr = 0.71 corresponding to thermally stratified air. Simulations
at higher Prandtl number are desirable in the future since, in oceanic flows, Pr = 5
and 700 for heat and salt, respectively.

We use a dynamic mixed model for the momentum equation that recently has
been shown to be very effective in equilibrium as well as non-equilibrium wall-
bounded flows by Armenio & Piomelli (2000), whereas a dynamic eddy-viscosity
model, previously used with success by Le Reibault, Sarkar & Stanley (2001) is used
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for the density equation. In particular, the SGS stresses are modelled using a mixed
model composed of a scale-similar part (Bardina, Ferziger & Reynolds 1980) and an
eddy viscosity part introduced by Smagorinsky (1963):

v = (g, — ;) — 2C4°|S (S, (2.4)
where §ij is the resolved strain rate tensor and S = /25;;S;;. The coeflicient C in
(2.4) is evaluated dynamically following Germano et al. (1991) using the Germano
identity L;; = X;; — 1;;, where L;; = ﬁ/,\LT, — ﬁiu% denotes the resolved turbulent stress
tensor and X;; the subtest-scale stresses. When using the least-squares procedure for
the mixed model, (2.4), the coefficient C is given by

1 (L;jM;;) — (NijM;;)

__ - 2.
=T MM, 2
In (2.5) we have
2~ =
M;j =4 1S[S;; — 4°|S|Sy, (2.6)
Ny = (@t — wty) — (@t; — ). (2.7)

A dynamic eddy diffusivity model for scalar transport has been used with success
previously, for example in a jet by Le Reibault et al. (2001). Such a model for the
subgrid density flux reads

17 -2 < ap

Lj=—C,4 |S|a—xj. (2-8)
Similar to the momentum equation, the constant C, is evaluated dynamically using a
test filter and a grid filter:
1 (&)

2 () 29)

C,=—

2 f\ N

Filtering is performed in all three directions which, according to Armenio &
Piomelli (2000), gives good results in neutral channel flow. In the above equations (-)
denotes an appropriate ensemble required to avoid the mathematical inconsistency
that one encounters when C or C, are removed outside the filtering operation
during the dynamic procedure. Since the flow is homogeneous in the (x, y)-planes,
plane-averaging of the dynamic coefficients, C and C,, is applicable and used. In
order to avoid unphysically large back-scattering, the dynamic coeflicients are set to
zero during the rare occasions when they reach negative values. However, physical
backscatter is allowed by the scale-similar part of the SGS model.

2.2. Numerical method

The Navier—Stokes equations together with the density equation are solved using the
semi-implicit, fractional-step algorithm recently developed by Zang, Street & Koseff
(1994). The Adams—Bashforth technique is used for the time advancement of the
convective terms, whereas the diffusive terms are treated implicitly with the Crank—
Nicolson scheme. The space derivatives are discretized with the second-order centred
scheme, thus the algorithm is overall second-order accurate both in time and in space.
A multigrid technique is used for the solution of the pressure equation. The algorithm
has been demonstrated to be second-order accurate for mass, momentum and energy
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conservation by Armenio & Piomelli (2000). Since the turbulent field is homogeneous
in the streamwise as well as in the transversal direction, periodic boundary conditions
are used in the (x, y)-coordinates for the velocity field, the pressure and the density.
At the rigid walls, the no-slip condition is used for the velocity field. The density is
kept constant at the walls, with ps, and p,,, denoting the values at the bottom and
top walls, respectively.

The algorithm has been extensively validated against DNS data and LES data of
other authors. Details are reported in Appendix A. Furthermore, the performance of
the SGS models is discussed in Appendix B. The ‘“fine’ grid of table 2, Appendix A,
is used for the results shown here.

3. Theoretical background
3.1. Inner and outer scales

It is well known that wall-bounded turbulent flows have two distinct regions: an
inner near-wall layer and an outer layer. In presenting results, outer-scale quantities
or inner-scale quantities will be used as appropriate for normalization. Outer-scale
quantities are centreline mean velocity, u., bulk velocity, u,, or the imposed density
difference, Ap. The bulk velocity, u, = (1/A) [udA, is an area-averaged measure of
the channel velocity. The inner-scale velocity is the friction velocity,

U = \/1,/p,
whereas the corresponding scale for the density is the friction density,

w _ —k(2(p)/0z)w
po= L _ KOG a1
U, U,
where Q,, is the density flux at the wall and k = v/Pr is the molecular diffusivity
of density. The friction density is a normalized wall density flux just as the friction
velocity is a normalized wall stress. An important non-dimensional number which
will be referred to throughout the paper is the Nusselt number:
2hQ%¥
Nu = “ 3.2
U= Ay (32)

with Q% = (1/2)(Qsp + Ober)- In the case of purely diffusive mass transport through

a stationary fluid, Nu = 1; thus the value of Nu quantifies the increase of wall mass
transport due to turbulence with respect to its laminar value.

3.2. Richardson numbers in channel flow

It is tempting to parameterize the flow using a single, overall Richardson number.
One possibility is to use the outer velocity scale, for example the bulk Richardson
number (KUOM),

_ Apgh

Rib - ’
2poui;

(3.3)

where uj, is the bulk (average) velocity based on flow rate and cross-sectional area.
The choice of u, could be replaced by the free-stream velocity, u.,, in a developing
boundary layer, for example by Arya (1975) or by the centreline velocity, u., in
channel flow as done by Gage & Reid (1968). Another possibility is to use an inner
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velocity scale and define a friction Richardson number (GFMK),
_ Apgh
 pou’

The definition of Ri, involves an outer-scale quantity for the density variation but an
inner-scale quantity for the velocity variation. The relationship between the friction
and bulk Richardson numbers is

Ri;

(3.4)

. . up
Ri, = 2Ri,—. (3.5)
uT

The friction Richardson number is much larger in magnitude than the bulk Richard-
son number and explicitly involves viscosity.

In unbounded shear flows, the gradient Richardson number, Ri, = N?/S2, has
been established as the key parameter, based on mean quantities, that determines
the influence of stratification. We now estimate values of Ri, at key locations. The
shear at the wall is u?/v while, from (3.2), the mean density gradient at the wall is
(NuAp)/(2h) giving the wall value of the gradient Richardson number as

. . Nu

Ri,(z =0) = Rtfﬂ, (3.6)
which is a small quantity at high Reynolds number because of the inverse-square
dependence on Re.. The variation of Ri, across the channel can be estimated after
approximating the mean velocity and mean density profiles by classical log-layer
scaling; the shear is u,/kz and the mean density gradient is p./k,z with x the von
Karman constant and «, the equivalent constant for the mean density profile. After
using (3.1)—(3.2), and some algebraic manipulation the following result is obtained:

Nux? z

Rig(z) = Ripz—— .
+(2) : 2PrRe;x, h

(3.7)
Thus log-layer scaling implies that Ri,(z) increases linearly in the vertical direction and
that, in the core of the channel where z = O(h), the value of the gradient Richardson
number exceeds the wall value, Ri,(0) given by (3.6), by a large multiple, O(Re,). The
gradient Richardson number becomes singular at the centre of the channel or at the
edge of the boundary layer where the mean shear vanishes.

3.3. Implications of the experiments of KUOM

KUOM have performed experiments using an open water-channel flow (Pr ~ 5) for
both stable and unstable stratification. In their investigation, the free-surface Froude
number was very small, and consequently the effect of surface waves was negligible.
In the case of stable stratification, they considered relatively small-Reynolds-number
flows and a wide range of bulk Richardson numbers ranging between neutral flow
(Ri, = 0) and a strongly stratified case (Ri, = 0.135). The above numbers are quoted
by the authors using the hydraulic radius of the section which, in the limiting case of
infinite span, collapses to the height of the open channel. The Reynolds number in
the experiments of KUOM spans the range 140 < Re, < 226.

Since an open channel flow is similar to half of a closed channel flow, an analogy
can be drawn between the two flows. An open channel with height & and zero stress
at the free surface experiences the same friction velocity, u., as a closed channel flow
with height 2h, and the two flows are equivalent in terms of viscous wall stress.
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Using the data tabulated by KUOM, values of the friction Richardson number can
be obtained from
Ri.xvom = (Pbor — ,szs)gh

Pouz

with pss and pj, denoting the density at the free surface and bottom wall, respectively.
In the equivalent closed channel, the centreline value of mean density must be the
same as py,, so that the imposed density difference, pjor — prop, in the equivalent closed
channel is equal to 2(py, — pys). Therefore the Richardson number of the equivalent
closed channel is

Rir,cc — (pbot - pztop)gh — 2(Pboz - fj?)gh — 2Rir,KU0M~ (38)
Pouz Pol;

KUOM show that at Ri, = 0.135, equivalent to Ri,xyom = 73, and Reynolds number,
Re, = 226, two distinct zones are detected: the inner layer in which turbulence is
reduced but still active, and the outer layer where large internal waves occur that
periodically break and generate strong intermittency. Referring to (3.8), it appears that
an equivalent closed channel flow would experience a qualitatively similar behaviour
for Ri, = 146.

3.4. Implications of linear theory

As stated in the introduction, a linear theory has been developed by Gage & Reid
(1968) who find an explicit relation between the critical Richardson number for
stability and the Reynolds number of the flow. In their analysis, the authors considered
a stably stratified channel flow with imposed temperatures at the walls, equivalent
to the problem under investigation in the present paper. They use the centreline
Richardson number defined by

. g2hAp
Ri, = , 3.9
i po6u? (3.9)
which can be related to the friction Richardson number to give
. .l . Ré2
er = SRICE = SRICRie%. (310)
In a laminar plane Poiseuille flow, the velocity is parabolic giving that
% _ 2u,
dz lwail N h
W 2u,
= L = —
v h
R 2
= 261 = Re,.
Therefore, (3.10) becomes
Ri, = 2Ri.Ré’. (3.11)

Table 1 of Gage & Reid (1968) with Re. = 16200 (corresponding to the value
Re, = 180 in the LES) gives the critical value of the Richardson number beyond
which the flow is laminar to be Ri. = 0.0136. With these values, (3.11) implies that
laminar plane Poiseuille flow corresponding to Re, = 180 is linearly stable if

Ri, > 881. (3.12)
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Case Ri, Ri, Re, Rey, Re, ¢ x 103 Nu
(@[] 0 0.0 180 2800 3240 8.18 5.95
Cl1 18 0.032 180 3102 3764 6.73 3.71
C2 60 0.0685 183 3666 4743 4.99 2.79
C3 120 0.112 180 4154 5623 3.71 227
C4 240 0.188 181 4567 6224 3.14 1.70
C5 480 0.297 178 5120 7149 2.40 1.28

TaBLE 1. Important quantities that characterize the state of stratified channel flow. Ri, is the friction
Richardson number imposed on the flow at t = 0 which is also the expected theoretical value at
the final steady state. Subsequent columns correspond to the final steady state.

GFMK find that the Re, = 180 case laminarizes at Ri, ~ 45. However, the
corresponding laminar profile would be unstable to small disturbances at this
Richardson number, in view of (3.12). Moreover, it should be remarked that if
finite-amplitude disturbances induce subcritical transition Kleiser & Zang (1991), the
value of Ri, required to relaminarize the flow may be even larger than 881. The
GFMK result of a laminar steady state at Ri, ~ 45 appears to be inconsistent with
linear theory.

According to Gage & Reid (1968), the critical value of the centreline Richardson
number defined by (3.9) is found to increase as a function of Reynolds number and
finally asymptotes to the value

Ri, = 0.0554 (3.13)

at infinite Reynolds number. Assuming a parabolic velocity profile so that the bulk
velocity is u, = 2u./3, where u, is the centreline velocity, it follows that channel flow
is linearly stable if

Ri, > 0.5,
where the bulk Richardson number is defined by (3.3).

4. Transient development of the flow in the presence of stable stratification

The most convenient method of investigating stratified channel flow driven by
a constant mean pressure gradient is to vary the reference Richardson number in
the governing equations so as to impose target values of the friction Richardson
number, Ri;, at tu,/h = 0. The second column in table 1 lists these values of Ri, while
subsequent columns in the table refer to the final values of quantities important to
characterize the overall state of the flow. We defer the discussion of these final values
to §5 and, instead, summarize the transient evolution of the flow.

As outlined previously, GFMK have shown the existence of different turbulent
regimes based on the magnitude of the friction Richardson number; our choices of
Ri, overlap with the values chosen by GFMK. They started the simulations from a
realization of equilibrium channel flow with a passive scalar, which motivated our
choice of passive-scalar initial conditions for cases C1 and C2. Case C1 has the low
value of Ri, = 18 corresponding to the buoyancy-affected regime of GFMK. Case C2
corresponds to a case investigated by GFMK and identified as buoyancy-dominated.
Cases C3-C5 have higher stratification than covered by GFMK, with C3 having a
value of bulk Richardson number, Ri, = 0.112, near the high end of the cases studied
in KUOM. The initial condition for case C3 is chosen to be a realization from the
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final steady state of case C2. Similarly, the initial condition for case C4 is chosen
from the final steady state of case C3 and that of case C5 chosen from final state
of case C4. Such a choice of initial conditions is motivated by a desire to keep the
transient short as discussed in Appendix C.

The pressure gradient, F, that drives the flow is kept constant and due to the
integral balance between the pressure gradient and the viscous wall friction at steady
state

2hF = (‘Ct()p + Tbor)n (41)

the steady-state value of the friction Reynolds number, Re, = u,h/v, must approach
its initial value after an initial transient. The simulations are run for the time, which
is relatively long in wall units, necessary to achieve convergence to the theoretically
expected steady-state value of Re, ~ 180, and then statistics are obtained by time-
averaging over a sufficiently long interval.

4.1. Moderate-Richardson-number cases

The transient development in case C2 which is representative of all the simulations
with Ri, > 60 is discussed here. The flow develops from an initial state of fully
developed channel flow with density fluctuations corresponding to a passive scalar
field. Figure 1 shows the time-evolution of the main bulk quantities for case C2.
In agreement with GFMK, it appears that when stable stratification is imposed a
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transient, characterized by a dramatic decrease of the wall stress, occurs as shown in
figure 1(a). Corresponding to the reduction of wall friction, the flow accelerates since
the driving pressure gradient is held constant, and consequently, the bulk Reynolds
number increases in figure 1(b). The Nusselt number drops by a factor 3 in figure 1(c)
while the turbulent kinetic energy decays by almost one order of magnitude during the
first stage of the transient. At the end of the initial transient, it appears that the flow
becomes approximately laminar. However, since the Richardson number, Ri, ~ 27,
at the end of the initial transient is much smaller than the critical value required for
stability ((3.12) implies that, if Ri; < 881, stratified channel flow with Re, = 180 is
linearly unstable), the flow cannot remain laminar and eventually must undergo a
transition to turbulence. In the case of unstratified plane Poiseuille flow, the critical
centreline Reynolds number based on linear analysis is equal to 5772, though, with
finite-amplitude initial disturbances, subcritical transition has been observed for Re,
as low as 1000 (see Kleiser & Zang 1991 for an exhaustive review). In our simulation,
a transition to turbulence occurs when Re, ~ 4800 at tu,/h ~ 9. During transition,
both the wall stress and the Nusselt number increase sharply. After transition, the
flow tends toward a new turbulent, steady-state condition with overall transport
coefficients that are smaller than the initial values corresponding to unstratified,
fully developed channel flow. In fact, figure 1 shows that when tu,/h > 24 the bulk
quantities settle down around steady-state values of Re, ~ 180 and bulk Reynolds
number Re, ~ 3670.

GFMK show the evolution of flow rate in figure 2 of Garg et al. (2000). The
cases with Ri, = 45 and 60, unlike the cases with lower values of Ri,, do not show
convergence to a constant flow rate. Similarly, their figure 21(a) shows a plateau at
Re, ~ 90 starting at tu,/h = 4 and continuing up to the end of their simulation,
tu./h = 10, without convergence to the theoretically expected result at steady state,
namely the initial value of Re, ~ 180. Thus, probably due to the large computational
efforts required, the authors did not continue their simulations long enough to obtain
steady-state conditions, either laminar or turbulent. Indeed, our simulations also
show a plateau in Re, during the transient (4 < tu,/h < 10) as shown in figure 1(a);
however, this plateau is followed by transition to a new balanced state with Re, ~ 180
along with reduced density transport at the wall as shown by the reduced Nusselt
number. Such a transition to turbulence is expected based on our discussion of the
analysis of Gage & Reid (1968) in §3.4.

The stabilizing effect of stratification in the final, balanced state is linked to the
reduced value of Nu, signifying inhibited density transport at the wall, the reduced
value of wall skin friction, ¢; = 2u?/uj, as well as the reduced value of normalized
turbulent kinetic energy, K /ui. The profiles in figure 2 show the relaminarization
during the initial transient in more detail. Turbulent transport is almost completely
suppressed as depicted in figure 2: the mean shear at the wall reduces and the velocity
profile tends to assume a parabolic shape (figure 2a), the density gradient at the
wall decreases and the density profile becomes flatter (figure 2b) (in the limit of the
laminar regime it would be linear). During this initial period, the vertical turbulent
fluctuations as well as the density fluctuations tend to vanish near the wall; however,
they remain large in the core of the channel (figure 2¢,d). These large values of the
density and vertical velocity fluctuations in the core of the channel do not correspond
to classical turbulence in figure 2(e), the buoyancy flux is countergradient in the outer
region, 0.5 < z/h < 1, at tu,/h = 1.15, indicating transfer of energy from the density
fluctuation to the vertical velocity fluctuation, and becomes vanishingly small at later
time. Similarly, as shown in figure 2(f), the Reynolds shear stress, after transient
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initial transient: (@) mean velocity; (b) mean density; (c¢) vertical turbulence level; (d) density r.m.s.;
(e) vertical density flux; (f) Reynolds stress (u'w’).

countergradient values in the core of the channel, also becomes vanishingly small at
tu,/h = 3.45.

The transfer of potential energy to vertical kinetic energy followed by an almost
zero value of the plane-averaged buoyancy flux during the initial transient suggests
the presence of internal waves. Figure 3 shows visualizations of the flow field during
the relaminarization process (tu,/h = 1.65). The isopycnal surfaces and contours in
figure 3(a, b) clearly show a strong wave system in the core of the channel, whereas, in
the inner layer, the vertical undulations are suppressed. Vertical velocity fluctuations
shown in figure 3(c) correspond to the same vertical section of the channel for which
isopycnal contours are displayed in figure 3(b). A closer view of figure 3(b,c) shows
that the upward excursions of the isopycnal surfaces correspond to positive vertical
velocity (solid contours in figure 3¢), whereas in the wave troughs the vertical velocity
is negative (dashed contours in figure 3¢) thus indicating a wave-like behaviour
associated with the exchange of potential and vertical kinetic energy.

To summarize, there is buoyancy domination for all the cases studied here with
Ri; > 60 evidenced by relaminarization, as stated by GFMK, but the relaminarization
is limited to the transient evolution of the flow. This complete suppression of turbu-
lence during the initial transient is associated with internal waves set up in the core
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FIGURE 3. Visualization of flow field at tu,/h = 1.65 during initial transient: (a) density iso-surfaces
in the core of the channel and in the inner layer; (b) density isocontours in a vertical section of the
channel; (c) vertical velocity isocontours corresponding to the section shown in (b).

of the channel that exchange the available potential energy with kinetic energy. These
waves interfere with the turbulence maintenance mechanism at the wall as stated by
GFMK. Later in time, these internal waves subside due to viscous dissipation and the
wall region recovers, resulting in transition to turbulence. This equilibrium is a new
buoyancy-affected state of turbulence, characterized by reduced skin friction, Nusselt
number and buoyancy flux.

4.2. Low-Richardson-number case

The transient evolution in case Cl1 which has Ri, = 18 and passive-scalar initial
conditions is reported here. This case belongs to the buoyancy-affected regime of
GFMK. Similar to case C2 discussed previously, turbulence is suppressed in the
inner-layer, resulting in the reduction of the wall shear stress as well as the turbulent
kinetic energy. However, an important difference with respect to the behaviour at
higher values of Richardson number is that, in this case, stratification is not large
enough for turbulence to be completely suppressed. In particular, figure 4(d) shows
that the turbulent kinetic energy decreases by a small amount during the initial
transient, in contrast to an order of magnitude decrease in case C2 during the initial
phase of turbulence suppression. Later the flow is re-energized and a new turbulent
condition is reached. Inspection of the Reynolds stress (not shown) as well as the
vertical density flux (not shown) shows that turbulence is active during the transient.
Unlike the previously discussed higher Richardson number cases, countergradient
momentum and buoyancy fluxes in the core of the channel are absent when Ri, = 18.
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5. Buoyancy effects on the steady state

We have observed in the previous section that temporary relaminarization may
occur during the initial transient, but a non-laminar regime with a statistical steady
state is eventually reached. In this section, we discuss how stable stratification affects
the flow and mixing characteristics of this new asymptotic regime. The cases examined
span a wide range of Richardson numbers and table 1 lists relevant overall quantities
for these cases. The statistics were obtained by time-averaging the horizontal plane
averages, after the asymptotic regime is reached, over a sufficiently long time window,
tu./h ~ 10, to obtain converged values. In particular, we have checked that, in all
cases, the sum of the viscous and the turbulent (resolved + SGS) shear stresses is a
linear function of the wall-normal coordinate.

In Appendix C, the effects of different initialization procedures for the density
field, inferred from additional simulations, is reported. The primary result is that the
asymptotic state is independent of these initialization procedures.

5.1. Mean velocity and density profiles

Due to the effect of stable stratification, vertical momentum transport is suppressed
with respect to the passive scalar case. Since the driving pressure gradient is constant,
the viscous wall stress and, therefore, the slope of the mean velocity profile at the
wall is invariant between cases as shown in figure 5. The reduced vertical momentum
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FIGURE 5. Mean velocity profile in global units, scaled with the centreline velocity of the passive
scalar case, for several levels of stratification. Both halves of the channel are shown. Cases CO, Cl1,
C3, C5 correspond to Ri, =0, 0.032, 0.112, 0.297, respectively.

0.50 ™
025}

) i

| |

X [

T-0.25]
_0_50-....|....|....|....l....l....l....l...'.:'

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
zlh

FIGURE 6. Mean density profile in global units for several levels of stratification.
Both halves of the channel are shown.

transport with increasing stratification is manifested as the change in the mean
velocity in the core region from a flat, well-mixed profile to a curved profile which,
in the limit of relaminarization, would be parabolic. The centreline velocity increases
systematically with stratification in figure 5 and so does the centreline Reynolds
number and bulk Reynolds number in table 1. The friction coefficient, c¢s, and the
Nusselt number, Nu, are also shown in table 1. In accord with previous investigations
by KUOM and GFMK, stable stratification leads to a systematic reduction in both
Nusselt number and friction coefficient. Since the simulations are performed with
constant mean streamwise pressure gradient (therefore, constant friction velocity at
steady state) the reduction of the friction coefficient is due to the increased bulk
velocity of the flow.

The mean density profile is also affected by stratification (figure 6). In particular, the
increase of the Richardson number introduces two main changes with respect to the
passive scalar case. First, it reduces the density gradient at the wall (and consequently
the Nusselt number, in table 1). Second, the density profile becomes sharper in the
core of the channel indicating a tendency to form a density interface. Note that, in
the limit of complete relaminarization, the mean density variation would be a straight
line between the fixed values of the density at z/h = 0 (bottom wall) and z/h = 2 (top
wall). Although, the slope of the density profile at the wall decreases with increasing
bulk stratification and tends to that of the laminar profile, the slope at the core of
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flux is the sum of resolved and subgrid model components. Cases CO, C1, C3, C5 correspond to
Ri, =0, 0.032, 0.112, 0.297, respectively.

the channel increases and does not tend towards the laminar value. For cases C1-C5
the magnitude of the mean density gradient initially decreases away from the wall
as expected of turbulent mixing and then increases when the core of the channel is
approached.

Such a non-monotone behaviour of the mean density gradient can be explained by
considering the Reynolds-averaged density equation which, in channel flow, reduces

to
(p'W(z) — k% = constant, (5.1)
z
where the constant is the wall value of the molecular flux, —k(dp/0z),. Using the

friction density, p, defined by (3.1), we rewrite (5.1) as follows:

dp _ (0p (p'w")

The last term in (5.2) is the buoyancy flux (henceforth used interchangeably with the
mass flux) normalized using inner variables, and its variation is shown in figure 7(a).
In the passive scalar case, Ri, = 0, the normalized buoyancy flux is almost unity
away from the wall, z/h > 0.1; this corresponds to the ‘constant flux’ hypothesis of
neutral boundary layers. However, its value departs from unity significantly at higher
values of Ri,. In the stratified cases, the buoyancy flux first increases away from
the wall and then decreases in the core of the channel. Correspondingly, according
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FIGURE 8. Mean velocity profile in wall units for several levels of stratification.
Cases CO0, C1, C3, C5 correspond to Ri, =0, 0.032, 0.112, 0.297, respectively.

to (5.2), the magnitude of the mean density gradient decreases and then increases
as observed in figure 6. In case C5, according to (5.2) the observed countergradient
transport, i.e. negative values of the buoyancy flux, would lead to a local mean
density gradient which is larger in magnitude than the wall value, as indeed observed
for the corresponding density profile in figure 6. To summarize, the mean density
profiles show non-monotone behaviour of density gradient and, even for large overall
stratification, there are local regions which are mixed by boundary-layer turbulence.

The variation of turbulent momentum flux is shown in figure 7(b). The maximum
value decreases with increasing stratification, with an especially large decrease between
cases C3 and C5. Note that the sum of turbulent flux and viscous flux is equal to the
straight line in the figure. Case C5 shows that the viscous contribution in the core of
the channel becomes increasingly important in strongly stable flows.

The LES result of sharpened density profiles in the presence of increasing overall
stratification has been also observed in other laboratory and field studies of mixing in
stably stratified flows. The density mixing in stratified channel flow can be conceptual-
ized as that between two turbulent regions (upper and lower near-wall regions) subject
to an overall stable density difference. It is instructive to look at density structure in
flows with a similar configuration. For example, Moore & Long (1971) investigated
the stably stratified shear flow between two counterflowing turbulent layers set up
by injection of approximately horizontal jets with a salinity contrast at the upper
and lower boundaries of a tank. The authors find that there is a steady-state vertical
density structure that consists of upper and lower regions, almost uniformly mixed by
turbulence, separated by a central region where most of the density variation occurs.
Crapper & Linden (1974) studied the central region between two layers stirred by
a horizontal grid and found that, with increasing stable stratification, the density
profile sharpens in the central region and, under some circumstances, a steady density
interface is possible. It appears that the sharpening of the density profiles observed
in our channel flow LES is consistent with other observations in similar stratified
mixing situations.

The mean profiles, plotted in wall units, as a function of the coordinate zt = u,z/v
are now discussed. The mean velocity profiles for the different cases are shown in
figure 8. In the unstratified case, three zones can be identified: the inner region
(z* < 30), the logarithmic region (30 < z* < 150) where the mean velocity variation
is approximately linear in log-linear coordinates, and a small core region for 150 <
zt < 180 where there is a deviation from the log law. The classical expression for the
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FIGURE 9. Mean density profile in wall units for several levels of stratification.
Cases C0, C1, C3, C5 correspond to Ri, =0, 0.032, 0.112, 0.297, respectively.

law of the wall in the neutral case is
ut =Alnzt + B.

Stable stratification increases the slope, A, of the log-zone and reduces the intercept, B,
of the velocity profile. Also, the core region appears to be widened and characterized
by a larger mean velocity gradient compared to the passive scalar case. The density
profiles plotted using wall units in figure 9 show that, similar to the mean velocity
profile, there are three zones. Under strongly stable stratification, the vertical extent
of the log-zone is progressively reduced while the core region widens.

5.2. Turbulence level and anisotropy

The streamwise intensity is reduced in most of the channel with respect to the passive
scalar case, figure 10(a). The wall-normal turbulent intensity shown in figure 10(b)
behaves differently depending on the level of stratification. For weakly stratified flow
(cases Cl1, C2 and C3) it is reduced throughout the channel. In the other cases,
the reduction of vertical fluctuations in the wall layer and log-zone with increasing
Ri continues; however, the fluctuations are enhanced in the core region. When
stratification increases, countergradient density fluxes are observed in the core region
(see figure 7), that act as a source term in the (w'w’) transport equation. The spanwise
velocity fluctuations shown in figure 10(c) decrease with increasing stratification,
except for case C5. The density fluctuations in the log-zone decrease consistently with
Ri,. However, p,,; in the core of the channel increases with increasing Rij,.

The ratio between the vertical and the streamwise intensity is shown in figure 11.
The magnitude near the wall, 0 < z¥ < 30, is nearly unchanged among cases
indicating that, in this zone, the structural characteristics of turbulence are not
affected by stratification. In contrast, a strong decrease with increasing Ri, is evident
in the log zone, showing that, in this zone, stratification preferentially diminishes
the transfer of energy from streamwise to vertical velocity fluctuations. Near the
centreline, vertical velocity fluctuations increase to a magnitude closer to that of the
streamwise component. The Reynolds shear stress (see figure 7) is strongly reduced
by stable stratification as well, suggesting that the sweep—ejection events known to be
critical to maintain wall-bounded turbulence are modified.

The state of anisotropy of the Reynolds stresses can be shown using the Lumley
invariant map. The quantities II, = b;jb; and I1I, = b;jb;by; are two non-zero
invariants of the anisotropy tensor, b;; = (uQu}) /2K — 6;;/3; the other invariant, the
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FIGURE 12. The Reynolds stress anisotropy shown using the Lumley invariant map: (a) weakly
stratified case C1 with Ri, = 0.032, and (b) strongly stratified case C5 with Ri, = 0.297.

trace, is identically zero. The quantity, I1 ;/ : quantifies the magnitude of the anisotropy,
while the ‘shape’ of the anisotropy can be quantified by the corresponding value of
(I1 ;/ 211 ,:/ 3). All realizable states of fluctuating motion are constrained to lie within
the ‘triangular’ region shown in figure 12. The linear sides originating from the origin
(the point of isotropy) represent axisymmetric turbulence. The right-hand side of
the ‘triangle’ with 111, > 0 represents cigar-shaped turbulence with two eigenvalues
of the Reynolds stress tensor smaller than the third, while the left-hand side with
111, < 0 represents pancake-shaped turbulence with two eigenvalues larger than the
third. The upper curve of the ‘triangle’ corresponds to two-component turbulence
where one of the eigenvalues is identically zero. Figures 12(a) and 12(b) contrast the
state of anisotropy between the low-Ri case C1 and the high-Ri case C5. In general,
the magnitude of the anisotropy, I1,, decreases with distance from the wall. In both
cases, the fluctuating motion is two-component at z* = 1 because the wall-normal
component is much smaller than the other components. The motion relaxes to a
cigar-shaped axisymmetric state (essentially because u,.,s is larger than v.,s ~ W)
in the region z* < 30. In the region 30 < z* < 110 there is substantial difference
between the two cases: the high-Ri case shows a change towards pancaked-shaped
turbulence (the left-hand side of the ‘triangle’ with I11, < 0) with increasing z*, while
the low-Ri case continues to stay near the right-hand side. The implication is that,
in the presence of stable stratification, the fluctuating motion is more horizontal,
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FiGure 13. Isopycnals in a vertical cut across the whole channel after statistical steady state is
achieved: (a) moderate stable stratification (C2) (tu./h = 20); (b) strong stable stratification (C5)
(tu,/h = 20).

with the vertical component smaller than the horizontal components. However, the
fluctuating motion is not strictly two-component. The behaviour in the core region,
110 < z* < 180, is similar between the two cases in that the Reynolds stresses relax
towards isotropy because the mean shear decreases.

Stable stratification also reduces the vertical buoyancy flux when the Richardson
number increases (figure 7a). In agreement with the data of KUOM, in the case
of strong stratification, the core of the channel is increasingly characterized by the
presence of countergradient density fluxes. Note that the unnormalized value of the
buoyancy flux decreases more dramatically than that suggested by figure 7(a) because
p. decreases with increasing Ri,. Similarly to the turbulent intensities, the ratio of the
vertical and streamwise density fluxes (not shown) is mainly affected away from the
wall. The vertical buoyancy flux is preferentially damped relative to the streamwise
flux.

5.3. Visualizations of the instantaneous fields

Figure 13 shows isopycnals, that is isocontours of the instantaneous density field, in
the fully developed regime, for two different cases, C2 and CS5.

It is clear that turbulence and internal waves coexist. Specifically, figure 13(a) shows
that, for moderately stratified flow (C2), waves are present in a narrow region around
the channel centreline, whereas the region near the wall has intermittent ‘bursts’
associated with near-wall turbulence. The square of the Brunt-Viisili frequency N2
(reported on the right-hand side of figure 13a) rapidly decreases in the wall layer and
is nearly constant in the core of the channel apart from a narrow area at the centre
where wave activity is observed.

On the other hand, in the strongly stratified case C5 (figure 13b) the waves extend
into the near-wall region. In this case, after the rapid decrease from its wall value,
N? reaches a local minimum and then again increases in a wide part of the channel.
Such an increase is related to the previously discussed sharpening of the mean density
profile in the core of the channel. We have also plotted the turbulent streaks at
zt ~ 12 for three different cases, namely neutral flow, and two stratified cases, C2
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stratification (C2) (tu./h = 20); (c) strong stable stratification (C5) (tu,/h = 20). Here u' is the
fluctuation with respect to the plane-averaged velocity and, thus, regions with velocity lower than
the plane-averaged velocity are displayed in various shades of grey.

and C5, in figure 14. Narrow and elongated low-speed streaks are present in the
neutral case (figure 14a) signifying flow ejections from the wall that cause mass and
momentum to mix. In the case C2, the structures are less energetic but still present in
the flow (figure 14b). Finally, the visualization, figure 14(c), corresponding to the case
of strong stratification (C5) is remarkably different. There is no evidence of coherent
low-speed streaks, and, furthermore, the magnitude (see the contour level bar) is
much smaller than that in the previous cases. The absence of coherent structures is
the signature of the strong suppression of vertical transport of mass and momentum.
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FIGURE 15. Gradient Richardson number as a function of the vertical coordinate for different
cases. Cases C2, C3, C4, C5 correspond to Ri, = 0.0685, 0.112, 0.188, 0.297, respectively.
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FIGURE 16. Vertical Froude number versus gradient Richardson number for different friction
Richardson numbers.

5.4. The gradient Richardson number

Profiles of the local value of the gradient Richardson number, Ri, = N?/S?, are
shown in figure 15. The gradient Richardson number is singular at the centreline and
is very large in a narrow region near the centreline. On the other hand, in a large
region from the wall onwards, Ri, ranges between 0.02 and 0.2 and is well-behaved.
There is an equilibrium region where the variation of Ri, is linear as suggested by
(3.7). For a given case, Ri, exhibits monotone increase from the wall towards the
centre of the channel. Also, cases with increasing Ri, have larger values of Ri, at the
same distance from the wall. It is remarkable that the value Ri, ~ 0.2 seems to be
the value that determines the point for the abrupt change of the slope of the Ri,(z)
profile.
The vertical Froude number,

Frw = Wrms/NLea
with
Le = p;ms/(a<p>/az)
denoting the Ellison scale, is plotted as a function of the gradient Richardson number
for four cases in figure 16. For a given case, it appears that in the region with Ri, < 0.20

the Froude number decreases somewhat, showing that the vertical buoyancy force
becomes increasingly important in the vertical momentum balance. The decrease of
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FiGURE 17. The influence of gradient Richardson number on (a) the ratio, B/P (a surrogate for
mixing efficiency), and (b) the turbulent Prandtl number, Pr,. Cases C1, C2, C4, C5 correspond to
Ri, = 0.032, 0.0685, 0.188, 0.297, respectively.

Froude number with increasing Richardson number is to be expected. Nevertheless,
it is interesting to note that, in agreement with previous analysis of Sarkar (2000),
Fr,, asymptotes to an O(1) constant at large values of Ri,. In channel flow Fr,, — 0.8,
while Fr,, — 0.6, 0.75 in uniformly sheared flow.

The ratio B/P = Riy, the flux Richardson number, or sometimes, B/e, is often
used to represent mixing efficiency. Here, B = —(g/po){p’w’) is the buoyancy flux
while P = —(0(u1)/0z){(u'w') is the production of turbulent kinetic energy. Note that,
within the framework of the eddy viscosity hypothesis,

(u'w') = —Du—aw, (5.3)
oz
o 0
(W) =D, é’” (5.4)

the ratio
B/P D 1
/, =L =— (5.9)
Ri, D, Pr,;
where Pr; is the turbulent Prandtl number.
The behaviour of the ratio B/P and turbulent Prandtl number, Pr,, for several
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levels of stratification and along the vertical direction is worth describing in some
details (figure 17) as follows.

(a) For 0 < Ri, < 0.2, the value of B/P increases linearly with the gradient
Richardson number in all the cases investigated. Correspondingly, the turbulent
Prandtl number is nearly equal to 1 in the neutral case and it slightly increases
with increasing Ri,. The value of Pr, >~ 1 observed here is consistent with previous
studies of neutral flows where values of turbulent Prandtl number in the range
of 0.7 < Pr, < 1.2 have been measured depending on the specifics of the flow.
Furthermore, previous laboratory and numerical studies of stratified uniform shear
flow, Gerz et al. (1989) and Jacobitz et al. (1997), show that Pr, increases little in the
range 0 < Ri, < 0.2 just as in the current study.

(b) For Riy > 0.2 the behaviour is qualitatively different, depending on the level of
stratification. For weak stratification, cases C1 and C2, the value of B/P continues
to increase with Ri, but at a smaller rate and, thus, the value of Pr, increases
somewhat with increasing Ri,. For stronger stratification, cases C4 and CS5, after
attaining a maximum value (approximately 0.14), B/P decreases with increasing Ri,.
Consequently, Pr, increases rapidly. A more rapid increase of Pr, for Ri, > 0.2 has
also been observed in previous laboratory and numerical studies of vertically sheared
flow as summarized by Schumann & Gerz (1995), see their figure 3. The behaviour
of Pr, at large values of Ri, is of interest in developing parameterizations of mixing.
If the mixing efficiency, B/P — const, then, according to (5.5), Pr, would increase
linearly with Ri,. However, reviews of data by Ivey & Imberger (1991) and Schumann
& Gerz (1995) suggest that B/P eventually decreases with Ri,. The strongly stratified
cases C4 and C5 show a decrease of B/P when Ri, > 0.2 and, consequently, a
dramatic increase of Pr, which is superlinear. However, cases C1 and C2 with weaker
overall stratification show a more moderate and quasi-linear increase of Pr,.

(c) Finally, in cases C4 and C5, when Ri, > 0.45, countergradient buoyancy flux
is observed so that B/P becomes negative. Countergradient buoyancy fluxes have
observed previously, for example, by Gerz et al. (1989) and Holt et al. (1992) in
uniform shear flow when a ‘transition’ Richardson number (between 0.4 and 0.7)
is exceeded, and by KUOM in the experimental investigation of strongly stratified
channel flow. Such behaviour with negative values of B/P is not representative of a
turbulent Prandtl number, since the eddy viscosity concept ceases to hold.

6. Discussion and concluding remarks

A wide range of levels of stable stratification in turbulent channel flow is investi-
gated by the LES technique. A mixed model with a dynamic eddy viscosity component
and a scale-similar component is used. The eddy diffusivity coefficients for the subgrid
momentum flux and buoyancy flux, instead of being prescribed, are calculated with a
dynamic procedure.

Based on the results it appears that the increase of stable stratification induces
remarkable changes in the characteristics of wall-bounded turbulence. Our results
in the strongly stratified cases considered here are consistent with the experimental
finding of KUOM that, in the case of strong stratification, active turbulence survives
in the near-wall region and coexists with internal wave activity in the core of the
channel. Turbulence levels, momentum and buoyancy fluxes are generally suppressed.
The turbulent motion appears more horizontal (but not strictly two-component) with
increasing Richardson number. Countergradient density fluxes in the core of the
channel along with enhanced vertical velocity fluctuations are observed both in the
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FiGURE 18. The variation of maximum turbulent shear stress in the channel and the behaviour of
the bulk Richardson number in the various cases.

experiments of KUOM and in our simulations for sufficiently large stratification
(Ri, = 0.112, 0.188 and 0.297 in the LES). With increasing Richardson number, the
buoyancy-affected region encroaches into the inner layer with active turbulence. At
the highest stratification studied here, the coherent low-speed streaks near the wall
associated with near-wall turbulence tend to be suppressed.

The final statistical state reached in channel flow in cases C1-C5 corresponds to
active, but suppressed, turbulence near the wall and is not a laminar flow. This result
is consistent with the theory of Gage & Reid (1968) which, when applied to channel
flow at Re, = 180, predicts that linearly evolving disturbances are unstable when
Ri, < 881, a condition met by the values of Ri, in all the cases simulated here. On
the other hand, GFMK identify a buoyancy-dominated regime with relaminarization
for Ri;, > 45. Our simulations show such relaminarization for cases C2-C5 but it
occurs only for a limited period during the initial transient, and on continuing for a
time longer than GFMK the flow recovers to a new asymptotic condition of stratified
turbulence. The friction Reynolds number recovers to its initially imposed value as
demanded by integral momentum conservation. The stratification imposed at t = 0
has an associated potential energy which, during the initial transient, is exchanged with
kinetic energy (primarily that of the vertical component) through a strong internal
wave system. Although effective in interfering with near-wall turbulence during the
early evolution, the wave amplitude subsides later on in time, allowing near-wall
turbulence to recover.

The highest stratification level reported in the main body of the text is Ri, = 480.
We performed another simulation with Ri;, = 960, a value larger than the critical
value based on linear instability theory, Ri, . = 881. The transient is highly oscillatory
during the evolution of the bulk quantities; however, after a very long time, tu,/h ~ 70,
an asymptotic state with average Re, = 180 is reached. Figure 18 shows that,
although the maximum value of the Reynolds shear stress in the channel consistently
decreases with increasing stratification, indicating the suppression of turbulence, the
asymptotic state for the case with Ri, = 960 is still turbulent. Evidently, for turbulent
initial conditions, after the initial ‘relaminarization’, there is subcritical transition in
this case. Based on extrapolation of the trend shown in figure 18, the flow would
probably relaminarize for sufficiently large stratification at the moderate Reynolds
number of the current simulations. For high-Reynolds-number geophysical flows,
relaminarization may be difficult to achieve in practice. According to linear theory,
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FIGURE 19. Profiles of the Brunt-Viisidld frequency. Lines are results from the current LES.
Symbols correspond to the LES of Saiki et al. (2000) which, although at a significantly stronger
stratification level and different Reynolds number, is given for qualitative comparison. Cases C2,
C4, C5 correspond to Ri, = 0.137, 0.188, 0.297 respectively.

Ri, > 0.5 is the condition for stability of infinite-Reynolds-number Poiseuille flow.
The variation of Ri, shown in figure 18 shows that Ri, increases rather slowly with
increasing stratification when it is large.

The density field is mixed by boundary-layer turbulence in channel flow and is thus
generally relevant to the vertical density structure in boundary-driven geophysical
flows, for example the wind-driven upper ocean, the benthic boundary layer and the
atmospheric boundary layer. We find that, with increasing overall stable stratification,
the mean profile becomes significantly sharper in the core of the channel, see figure 6.
Even at the largest stratification level, Ri, = 0.297, the density profile is far from the
linear, laminar profile connecting the fixed values at the upper and lower walls; the
slope at the centreline is significantly larger than the laminar value. Our observation
of sharpened density profiles in turbulent channel flow is reminiscent of local regions
of enhanced density gradients that are often observed in the stably stratified ocean
and atmosphere as discussed by Turner (1973). Mixing of the density field in turbulent
channel flow can be idealized as a central region which is driven by two forced regions
of turbulence at the top and bottom, respectively. Laboratory experiments by Moore
& Long (1971) and Crapper & Linden (1974), which have a similar idealization of the
mixing situation, also show the formation of thin regions with large density variation
as observed in our LES of channel flow.

It is of interest to compare our LES results with those of recent studies of the stable
atmospheric boundary layer. Saiki et al. (2000) studied the response of a neutral
boundary layer to a cooling heat flux gradually applied to the surface. Their figure 9
shows a steady-state profile of N which, after normalization, is shown along with
profiles from the current LES cases in figure 19. According to our LES results,
with increasing stable stratification, N tends to develop a non-monotone behaviour,
with a local maximum near the wall and another local maximum in the vicinity
of the centreline. The results of Saiki et al. (2000), which correspond to a much
larger stratification and Reynolds number than our cases, shows an even stronger
non-monotone behaviour. Internal waves developing in the region between the top of
the boundary layer (where the Reynolds shear stress goes to zero and Ri; ~ 0.2) and
the top of the capping inversion are observed by Saiki et al. (2000). In the strongly
stratified cases C4 and C5, we also find internal wave activity in the region between
Ri, ~ 0.2 and the centre of the channel. Kosovic & Curry (2000) simulated the stable
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Figure 20. Correlation coefficient of the momentum flux as a function of the gradient Richardson
number for several levels of stratification. Cases C1, C2, C3, C4, C5 correspond to Ri, = 0.032,
0.0685, 0.112, 0.188, 0.297, respectively.

atmospheric boundary layer for a number of different conditions. All cases showed
a turbulent boundary layer above which a region with internal wave activity was
observed. To summarize, although the stably stratified atmospheric boundary layer
has different boundary conditions with respect to stably stratified channel flow, both
exhibit features generic to stably stratified wall-bounded flows.

There are at least three Richardson numbers that have been used by previous
investigators: the friction Richardson number Ri, and the bulk Richardson number
Rij, are single numbers while the local gradient Richardson number, Ri,(z), is a
function of the vertical coordinate. Since the flow is driven by a constant mean pressure
gradient, at steady state, the final value of Ri, is the same as the initially imposed
value making it convenient to distinguish between different cases. Nevertheless, it
must be recognized that stratification affects both near-wall turbulence transport and
that away from the wall and there is no reason to prefer Ri, over Rij.

As discussed in the introduction, the local value of the gradient Richardson number,
Ri,, is generally recognized as the important local parameter for describing strati-
fication effects in shear flows without walls and to interpret field measurements of
ocean microstructure. In stratified channel flow, KUOM identify Ri, as the parameter
better suited for characterization of the flow. We agree. It is found that, except for
a narrow region near the centreline where Ri, is singular, the gradient Richardson
number is well-behaved. Figure 20 shows the correlation coefficients associated with
the momentum flux for all the simulated cases. Given the wide range of stratifica-
tions, the collapse of the different curves is good. After a relatively constant value
at low values of the gradient Richardson number, the large decrease in the value
of the correlation coefficient over a narrow range, 0.15 < Ri, < 0.2, is remarkable.
This decrease in the correlation coefficient indicates a rapid change from unstratified
turbulence with classical mixing characteristics to stably stratified turbulence with
inhibited vertical mixing. The correlation coefficient associated with the buoyancy
flux in figure 21 also shows similar features. In addition, countergradient buoyancy
fluxes are present at locations with Ri, > 0.4 in the strongly stratified cases, C4-CS5.
The vertical turbulent Froude number, Fr,,, when plotted against Ri, in figure 16 also
collapses the behaviour of the different cases. The value of Fr,, asymptotes to an O(1)
constant consistent with other previous observations and a scaling analysis performed
for shear-driven turbulence by Sarkar (2000). Finally a closer look at figure 15 shows
that two different zones can be identified, characterized by different slopes of Ri,y(z),



LES of stably stratified channel flow 31

10
g
e £ T
£ 06F  m—= C3
2 E ca
< 04— ————— C5
= o 7. o e T T T T T T T N
= [~ T T T T T —
= 02 o \'h“&"-r ~
[ ..:’:'-'.:-;-: ------
ok *v.‘._v”: ““““
3 P | 1
1072 101 100
Ri

FIGURE 21. Correlation coefficient of the density flux as a function of the gradient Richardson
number for several levels of stratification. Cases C1, C2, C3, C4, C5 correspond to Ri, = 0.032,
0.0685, 0.112, 0.188, 0.297, respectively.

with Ri, ~ 0.2 the approximate boundary where there is a sharp change in slopes.
The first zone, which corresponds to a small slope of Ri,(z), is characterized by
more active turbulence and low wave activity, whereas the zone with large slope is
the region where internal waves are more active and classical turbulent transport is
strongly suppressed (for example look at figure 15 together with the isopycnals of
figure 13). Thus, the location where the slope of Ri,(z) increases rapidly, indicates
the border between the buoyancy-dominated central region and the buoyancy-affected
near-wall region.
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Appendix A. Validation of the computational model

Here, we present the results of tests performed for the validation of the compu-
tational model for both a passive scalar and stably stratified flow.

The case of a passive scalar, Ri = 0 in (2.2), is first investigated and results
compared with data from the DNS of Kim & Moin (1989), their case II which
is reported by Cabot & Moin (1993), as well as the LES results of GFMK. The
LES of the passive scalar evolution is started by imposing a linear density profile
on a fully developed turbulent field at Re, = 180 and continued so that, after an
initial transient, statistical convergence is achieved. Then statistics are accumulated
over a non-dimensional time u.t/h ~ 10. A coarse grid with 48 x 64 x 64 points
in the streamwise, spanwise and vertical directions, respectively, as well as a grid
with 64 x 64 x 96 points that has improved resolution in the streamwise and vertical
directions are used. The latter resolution corresponds to a ‘fine’ grid in the typical
practice of LES. A posteriori analysis of the results shows that the Ozmidov scale
Lo = \/€/N3 (with e the turbulent total dissipation), which is an estimate of the
smallest scale influenced by buoyancy, is generally larger than the grid spacing. Only
in a very narrow region near the centreline is Lo comparable to the grid size (about
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Case Domain Grid points Axt Ayt Az Az
GFMK 4nh x 2nth x 2h 64 x 64 X 65 35 18 0.5 13
Current (coarse) 4mh x 4/3nth x 2h 48 x 64 x 64 47 12 1 9
Current (fine) 4nh x 4/31th x 2h 64 x 64 x 96 35 12 1 5

TABLE 2. Summary of the computational grids used in the LES validation.

Case Ri, Re. Re, ¢ x 103 Nu
DNS 0 180 2800 8.18 5.95
LES (GFMK) 0 180 2833 8.07 5.80
LES (coarse) 0 180 2844 8.09 6.40
LES (fine) 0 180 2822 8.14 6.30
LES (GFMK) 18 180 3084 6.81 4.0

LES (coarse) 18 180 3141 6.52 3.65
LES (fine) 18 180 3122 6.64 371
LES (coarse) 480 180 5133 1.22 2.39
LES (fine) 480 180 5120 1.28 2.40

TaBLE 3. Summary of the final values of important bulk numbers in the simulations used for
validating our LES.

0.8 the vertical grid spacing in the fine-grid case and 0.45 in the coarse-grid case). The
Kolmogorov scale, #, is also small in that region, with 10y approximately the cutoff
for active turbulent motion, having a value which is approximately 5Lo. Table 2 lists
the grids used in our simulations as well as the grid whose results are analysed in
GMFK.

In addition to the passive scalar simulation, regridding tests using the coarse and
fine grids of table 2 have been performed for Ri, = 18 and Ri, = 480. The coarse-
grid case is initialized with a fully developed passive scalar field (Ri;, = 0) and the
buoyancy term is turned on in the momentum equation. For the fine-grid case, we have
interpolated the initial field from a coarse grid realization at the same Richardson
number and continued the simulation until statistical steady state.

A.1. Validation against the passive scalar case

Velocity statistics obtained with our coarse- and fine-grid LES are compared with
the DNS data of Kim & Moin (1989). Excellent agreement of the mean velocity
profiles (not shown) is obtained with both grids. A more sensitive test, the resolved-
scale turbulent kinetic energy K, shows that good results are obtained with both
grids. Differences appear only in the buffer layer where K peaks: the coarse grid
overpredicts K by 10% at zt = 15 compared to the DNS data, whereas the difference
drops to 2.5% using the fine grid. Similarly to the mean velocity profile, the mean
density profile also shows generally good predictions with both grids.

The final values of important overall quantities have been compared among the
DNS, our LES and the LES of GFMK (table 3). For the passive scalar case, the
fine-grid LES predicts a friction coefficient (cs) that is closer to the DNS value than
the LES of GFMK, whereas, for the Nusselt number the opposite is true. However
the differences are small; our fine-grid Nusselt number has an over-prediction of 5.9%
while GFMK underpredicts the Nusselt number by 2.5%.
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FIGURE 22. Mean velocity (curves without symbols) and mean density profiles (curves with symbols)
for stratified channel flow using two grids: (a) Ri, = 18 (the GFMK data are also reported);
(b) Ri, = 480.
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FIGURE 23. Vertical density fluxes for stratified channel flow using two grids: (a) Ri, = 18
(the GFMK data are also reported); (b) Ri, = 480.

A.2. Stratified flow, regridding tests

As mentioned previously, we have also performed regridding tests in the case of
stable stratification, for Ri, = 18 and 480. Due to the feed-back effect provided by the
density field to the momentum equation, in this case the statistics of the velocity field
are affected by the stratification and, therefore, it is critical to ensure that the results
are not affected by the grid resolution. Figures 22 and 23 show statistics obtained
with the two grids for the two levels of stratification, and the comparison with the
data of GFMK obtained with their coarse grid in case C1, Ri, = 18. This coarse grid
was used by GFMK for most results pertaining to the buoyancy-affected as well as
the buoyancy-dominated regime. The effect of increasing the grid resolution is small
and qualitatively similar to that of the passive scalar case. In fact, the influence of the
grid size on both mean velocity and mean density profiles is negligible. Our velocity
and density mean profiles compare well with those of GFMK (figure 22a). For the
turbulent kinetic energy (not shown), the results obtained with the fine grid fit those
of GFMK within 6%, whereas the coarse grid predicts a peak value at z+ ~ 15 larger
than that of GFMK by about 13%.

Finally, the vertical density flux is quite insensitive to the grid refinements as shown
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FIGURE 24. Evaluation of subgrid contribution to the Reynolds shear stress. The set of three upper
curves shows the total, i.e. sum of resolved and subgrid components, while the lower curves show
the subgrid components,

in figure 23 for both levels of stratification. Some differences between the present
results and those of GFMK are noticeable (figure 23a).

Overall, although our fine and coarse grid simulations show generally small differ-
ences, the fine-grid results are systematically better, especially for the turbulent kinetic
energy and wall quantities such as the skin friction and Nusselt number reported in
table 3. Therefore, the fine grid is used in all the computations.

Appendix B. Performance of the subgrid model

The subgrid contributions to the momentum flux and buoyancy flux are obtained
and the transport equation for K, the fluctuating kinetic energy, is examined for
the weakly stratified case C1 and the strongly stratified case C5. Furthermore, an
additional simulation is performed for case C5 with a different SGS model with a
purely dissipative eddy viscosity.

The fluctuation of the resolved velocity is defined by u! = &;— (ii;). Here, (.) denotes
the Reynolds average which, in channel flow, is calculated by averaging over time and
the horizontal plane. The kinetic energy of the resolved scale fluctuations is denoted
by K = (uu;) and the resolved stress by R;; = (uju]).

1

B.1. Subgrid contribution to the fluxes

The upper curves in figure 24 show the total shear stress, (u'w’) = W'w”) + (113),
while the lower curves show the subgrid stress, (t13). Stratification does not appear to
significantly affect the subgrid contribution while the total stress in case C5 is reduced
with respect to case Cl. Furthermore, results with the coarse grid (48 x 64 x 64)
show negligible differences with the fine grid (64 x 64 x 96), as already observed
by Armenio & Piomelli (2000) in neutral channel flow. The total buoyancy flux
B = {p'w) = (p"w") + (23), and its subgrid component, (13), evaluated using the fine
grid results are shown in figure 25. Countergradient (negative) flux is observed for
the total buoyancy flux in the core of the channel for case C5. The subgrid buoyancy
flux is non-negative because the dynamic coefficient, C,, in (2.8), following standard
practice, is clipped to zero whenever it becomes negative during the calculation.

The subgrid diffusivities, vy and kr, are calculated using the eddy transport fluxes
of momentum and buoyancy, respectively. (The scale-similarity part of the momentum
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FIGURE 25. Evaluation of subgrid contribution to the buoyancy flux.
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FIGURE 26. Profiles of the subgrid diffusivities of mass (k,/k) and momentum (v,/v) obtained with
the mixed model: for neutral flow and for strong stratification (case C5).

flux is not used.) The vertical distributions of vy and kr are reported in figure 26
both neutral flow and Ri, = 480 (case C5). The LES cases are highly resolved in
that the subgrid transport coefficients are smaller than the molecular values. As an
example, for the neutral flow, the maximum value of the ratio v,/v ~ 0.17. In the
case of neutral flow, the eddy diffusivities are zero at the wall and increase toward
the log-zone and then slightly decrease in the core region. Such behaviour is fully
consistent with that of previous LES of wall-bounded neutral flows. In the strongly
stratified case, the near-wall behaviour of the eddy diffusivities is similar to that of
the neutral flow, but the maximum values are reduced, in agreement with the reduced
turbulent activity. In the core region, where the gradient Richardson number is large,
the values of the eddy diffusivities become very small.

The subgrid Prandtl number is the ratio Prys = vy /ky where vy and kr are subgrid
eddy diffusivities of momentum and buoyancy, respectively. In the neutral case, Pry,;q
is larger than unity in the wall region (figure 27a) and decreases somewhat toward the
core of the channel, where turbulence is more isotropic (figure 27b). Such behaviour
of Pryy agrees well with previous LES of passive scalar transport, Cabot & Moin
(1993) and Wang & Pletcher (1996).

In the strongly stratified case, the SGS Prandtl number behaves similarly to that
of neutral flow in the near-wall region (0 < zt < 30). However, toward the centreline
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FIGURE 27. Profiles of the subgrid Prandtl number. Note that, for zt > 130, there is intermittent
clipping of the dynamic constants and the subgrid diffusivities are very small, making the numerical
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FiGURE 28. Dependence of the subgrid Prandtl number on the Richardson number,
case C5 with Ri, = 0.297.

(30 < zt < 90), Pry, slowly increases, and it eventually strongly increases for
100 < z* < 130. Evidently, subgrid fluctuations are able to transport momentum
more efficiently than buoyancy in the presence of stable stratification.

It should be noted that, near the centreline (z* > 130), the dynamic constants
are intermittently clipped to zero and the correspondent eddy diffusivities are very
small (see also figure 26), hence the value of Pry, being the ratio of two very small
numbers, is not meaningful in that region.

Interestingly, Pry,s increases similarly to the gradient Richardson number (compare
figure 27 with figure 15) in the strongly stratified case. Figure 28 shows Pr, plotted as
a function of Ri, in the strongly stratified case CS5. In the wall region (z* < 90) where
Ri, < 0.2, the SGS Prandtl number does not change significantly with increasing
gradient Richardson number. In the zone 90 < z* < 130, where Ri, > 0.2, Pry,
rapidly increases with Ri,. The increase is similar to that of the turbulent Prandtl
number, Pr,, in case C5, see figure 17. One difference is that, when z* > 120 and
correspondingly Ri, > 0.48, the total buoyancy flux becomes negative so that Pr,
cannot be defined, whereas the SGS buoyancy flux is still positive, although very
small. The observed behaviour of SGS Prandtl number is consistent with the results
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FIGURE 29. Balance of the kinetic energy showing most terms: (a) weakly stratified case,
Ri, = 0.032; (b) strongly stratified case, Ri, = 0.297. The terms are normalized using wall-scaling,
ie ut/v.

shown by Schumann (1991) who propose a model which exhibits a linear increase
of Prys with Ri, for sufficiently large stratification. The dependence of Pry, on
stratification is not explicitly prescribed in our LES. However, it appears that the
dynamic procedure automatically gives a dependence of subgrid Prandtl number on
the Richardson number that is consistent with previous results.

B.2. Budget of the resolved-scale turbulent kinetic energy

The general transport equation for the resolved-scale turbulent kinetic energy, K =
(u!u), is as follows:

oK 0K oT;

v Uj)=— = Pros + Pygs — €res — €595 — Bhres VZK —L. B1

5 - (u,>6xj s+ Psgs — € Esg. s+ v - o, (B1)
Here the production has a contribution from the resolved stress, P, = —Rl-j(S‘ij>,
and from the subgrid stress, Py, = —(t;;)(S;;). Similarly, the dissipation rate has

a viscous contribution from the resolved scales, €., = v{(0u;/dx;)(0u}/dx;)), and
a contribution from the SGS stress, €y = <7:ij5’l-j>. The resolved buoyancy flux is
Bes = —(g/p0){(p — pp)W”). In channel flow, the terms on the left-hand side of
(B1) are zero while the terms on the right-hand side are functions of the z (or x3)
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coordinate only. The subgrid and resolved contributions to the right-hand side of
(B 1) are compared and the buoyancy contribution is evaluated.

Figure 29 shows these terms for cases C1 and C5 corresponding to weak and strong
stratification, respectively. In both cases, at the wall the resolved-scale dissipation €,
is dominant while the SGS dissipation ey is zero. When z* > 10, both terms
have comparable contributions to the total dissipation. The subgrid production is
generally less than 30% of the resolved-scale value while the buoyancy flux, B, is
very small. In the inner layer (z+ < 50), stratification does not affect qualitatively
turbulent production and dissipation, nevertheless it can be noticed that, as the level
of stratification increases, the magnitude of these terms is noticeably reduced (i.e.
the maximum resolved production is about 0.18 in C1 and it goes down to about
0.13 in C5 and similarly for the dissipation). On the other hand, the behaviour is
qualitatively different in the core region, as described below. For the weakly stratified
case (figure 29a) the profiles of the terms resemble those of a neutral flow and the
buoyancy term is negligible. In the case of strongly stratified flow (figure 29b) the
buoyancy flux is not negligible and contributes to the production of kinetic energy,
consistently with the finding of the experimental investigation of KUOM. The SGS
dissipation, ey, has a small positive value in the core of the flow due to the backscatter
associated with the scale-similar term and acts a source of turbulent kinetic energy.
However, €4, is much smaller than the resolved-scale dissipation, €. It should be
noted that, although e, may be positive, the total dissipation ez, + €., remains
negative (a sink for K), and monotonically decreases towards the centreline.

B.3. Sensitivity to the subgrid model

A main conclusion of our work is that, at the high stratification of Ri, = 480, the
flow consists of active but suppressed turbulence at the wall coexisting with a zone
of internal wave activity. We emphasize that this result of a non-laminar asymptotic
state is completely consistent with laboratory experiments, field measurements as well
as the linear theory result that the laminar profile is unstable for this case, Ri, = 480.
Furthermore, as shown by figure 15, the region z* < 90 is subcritical with Ri, < 0.2
which allows turbulence to be sustained. In spite of the supporting evidence, we
have performed simulations with a different subgrid model to further strengthen our
conclusion.

The scale-similar part of the SGS model allows backscatter, i.e. energy transfer
from the subgrid scales to the resolved scales. In order to eliminate the possibility of
turbulence being forced by subgrid scales, we performed a new simulation for case C5
(Ri, = 480) with a purely dissipative SGS model with only dynamic eddy diffusivity
models for momentum and mass, essentially switching off the scale-similar part of the
original mixed model for the SGS stresses. As in the previous simulations, the eddy
transport coefficients are clipped to 0 whenever they get negative. Thus, we ensure
that the subgrid term is always a sink for the turbulent kinetic energy and cannot
produce turbulence.

Results with the new eddy-viscosity model are close to the original results with
the mixed model. In particular, the mean velocity profile (figure 30a) and density
profile (figure 30b) are only slightly affected by the model and, as a consequence,
profiles of the Brunt—Viisilid frequency as well as the gradient Richardson number
are nearly independent of the model. The r.m.s. density fluctuations predicted with the
eddy viscosity model practically coincide with those predicted with the mixed model
(figure 30c). Both predict a small level of density fluctuations in the wall region and
a high level of fluctuations in the core region. The Reynolds shear stress is nearly
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FIGURE 30. Comparison of two subgrid models in the strongly stratified case C5 with Ri, = 0.297:
a mixed model that allows backscatter and a purely-dissipative dynamic eddy viscosity model.
(a) Mean velocity, (b) mean density, (¢) r.m.s. density fluctuations, (d) Reynolds shear stress.

independent of the model (figure 30d) as are the normal stresses and buoyancy flux,
not reported here. The visualization of the instantaneous isopycnals (not shown) at
the final time of the simulation (tu./J0 = 15.6) clearly shows the presence of internal
waves in the core of the channel just as in the previous results with the scale-similarity
model. Clearly, turbulent momentum and buoyancy fluxes in the subcritical near-wall
region along with internal wave activity in the core region exists at this level of stable
stratification, independent of the choice of the model.

Appendix C. Influence of initialization procedure

Within the framework of an initially turbulent velocity field, we have explored a few
different initialization procedures for the density field in a strongly stratified case with
Ri, =480, Ri, = 0.297. Case C5, discussed earlier in the main body of the paper, was
initialized with a density field taken from the statistical steady state of case C4. The
following new simulations were performed. Case C5.1 was started with a turbulent
passive scalar field for the density fluctuations and the appropriate stable stratification
suddenly imposed at t = 0 similarly to the initialization procedures for cases C1 and
C2. Case C5.2 was started with zero density fluctuations and a time-dependent overall
stratification that increases linearly in time from a zero value to the final value over
a time period tu./h = 20. A time-dependent stable stratification, as in case C5.2, is
probably the most relevant of these cases to geophysical flows.
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FiGure 31. Influence of initialization procedure on the development of important bulk quantities.
Note that case C5.2 was not continued to its asymptotic state.

All of these cases with initially turbulent velocity fields and final Ri, = 480
show relaminarization during the initial transient despite the different initialization
procedures for the density field. Thus, the observation of GFMK of relaminarization
from turbulent initial conditions appears to be a robust feature of the initial transient
although, eventually, the flow recovers to a turbulent state in the inner near-wall
region due to boundary forcing.

Case C5.1 was continued for a time sufficiently long to achieve its asymptotic state.
Figure 31 compares the development of two bulk quantities in cases C5 and C5.1.
It is gratifying to find that the asymptotic state is approximately the same for both
initialization procedures. However, the transient is significantly longer in case C5.1
that starts from a passive scalar field. In this case, the asymptotic state is obtained
at tu,/h ~ 40 instead of the corresponding time of tu,/h ~ 12 for case C5. In order
to avoid the computational expense of such a long transient, we initialized cases C3,
C4 and C5 in the original series of simulations with a density field from cases with
stable (but weaker) stratification. Turbulence statistics were also compared between
the cases and differences were found to be negligible.

In order to avoid another computationally expensive simulation, case C5.2 was not
continued to an asymptotic state since, after relaminarization, the evolution of bulk
quantities are similar to case C5.1. Since the initialization procedures are different,
the early-time transient and route to a quasi-laminar state is different. However, the
development of the two cases during the recovery to turbulence is qualitatively similar.
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